
Electronic Invoice Adapters

Rute Sofia Rodrigues Duarte

Create It, Lisboa. Portugal, rsrd@mega.ist.utl.pt

Abstract. The development of Information Systems has been led by the necessity of interconnection between
the functionalities and information they manipulate, the biggest challenge being the integration of internal
systems, which solve company specific problems, with external information systems of their partners, leading to
a successful e-business.

Integration among companies is an important aspect in electronic invoice since it is based in the exchange of
data between the different company applications. This project consists in the integration of the Information
Systems, available at the e-market, through the construction of an adapter capable of sending and receiving
electronic invoices in a transparent way to the ERP1’s of the involved companies. The studied mechanism will be
the use of metadata, to describe distinct and specific application repositories to ease the integration between the
different formats used by the invoice system users as well as new users. This metadata layer will be used as a
data converter to a known pattern to allow data exchange with an invoice Broker.

Keywords: Legacy systems, Electronic Invoice, Business Process and Application Integration, Adapters,
Metadata.

1 Introduction

The Enterprise Application Integration (EAI) has always played an essential role in the Information Systems
development. Recently this role has increased due to, the need of integration of the different information systems
among companies, and the emergence of the Service Oriented Architecture (SOA). The biggest challenge
nowadays consists in the integration of the internal systems, which solve specific problems, with external
information systems of their partners, leading to a successful e-business.

The Business to Business Integration (B2BI) is important in this study given that electronic invoice is based in
the exchange of data between different company applications. Differences dwell in the method used for the data
exchange, the data type, liability, etc.

The typical scenario to electronic invoice goes through acquisition to the ERP´s of a specific module to the
safe e-documents exchange. This project consists in the integration of the Information Systems, available at the
e-market, through the construction of an adapter capable of sending and receiving electronic invoices in a
transparent way to the ERP’s of the involved companies.

As a prototype an adapter was developed capable of exchanging messages between the ERP in the national
market and an invoice Broker, without having to perform alterations in the ERP.

The studied mechanism is the use of metadata, (rules description, data structure and applicable restrictions –
data related with API2’s and ERP’s) to describe distinct and specific application repositories, so that the
construction of the metadata layer can ease the integration between the different formats used by the invoice
system users as well as new users integration. For each business application, the metadata define the business
entities with which the business application interacts and its available methods. The metadata is characterized
using XML and stored in a metadata repository.

The metadata layer will be used to convert the data to an outlined XML schema to the data exchange with the
invoice Broker. The WFC technology for the Web Services development will be used for the communication
with the invoice Broker. The prototype will be developed using Microsoft .Net 3.0 technologies and the ERP
used in the integration is the Primavera Express from Primavera Business Solutions.

1 ERP – Enterprise Resource Planning
2 API – is a source code interface that a computer application, operating system or library provides to support requests for

services to be made of it by a computer program.

2 State of the art

The productivity growth in the company’s finance and administrative areas depends on the capacity of
removing time-consuming and low value added tasks and fomenting the use of tools that allow the process
automation and digitalization.

In these days, the majority of time and financial resources used by companies is related with the invoice
processing, this method involves a group of manual tasks, from the insertion of data in the system to the invoices
and documents imprint and mailing. This problem increases with the company dimension, since big companies
deal daily with the emission and reception of hundreds of documents, which reflects in high expenses related
with paper, processing, imprint, envelopes and mail taxes.

The use of electronic document transaction solutions is, therefore, every day more important since it allows the
invoice process digitalization and automation, promoting the company’s productivity, efficiency and
competitivity.

By adopting the electronic invoice, companies will, not only promote the process simplification and co-
workers productivity, but also invest in innovation and business competitivity. As referred in [14], the electronic
invoice is a commercial document that resembles the conventional invoice but in an electronic format, enclosing
the same fiscal/legal value that the paper version, as long as it contains the necessary fields to any invoice, and
satisfies the legal conditions. The main purpose is to grant the authenticity of the document origin and its
contents integrity.

2.1 Information Systems Integration

The integration of Information Systems is an obstacle to many businesses, as supply chain partners consist of
independent systems that in some cases cannot communicate one another. Recently this situation has been
aggravated as due to the necessity of integration of the information systems both inside the business and between
different businesses. [15]

Integration of the different Information Systems inside the company is crucial to take advantage of e-business.
The method implemented by many Portuguese companies went through the integration of the existing systems
through ERP’s. It was assumed that the problem might be solved by replacing all the Information Systems by
one ERP.

The company’s internal ERP’s are frequently implemented according to the data pattern, business processes
and logic. The failure of the system to achieve its goals can be due to the fact that ERP do not cover all the
information technology requirements, and do not meet the business processes. [13]
As companies started installing disparate information systems the integration among them became more
difficult. [15] The top priorities of companies these days is the exchange of data and sharing of business
processes across multiple trading partners. This is called B2B Integration. [4]

Although there are many kinds of integration- interface, data method – all are based on exchanging data
between two Information Systems, The differences reside on how this data exchange occurs, what kind of data is
exchanged, which guarantees are offered, and so on. [11] This led to the development of a Enterprise
Application Integration (EAI).

There are two major approaches for legacy systems integration: application integration and data integration.
[12] [5].

1. Application Integration: In this approach applications contain the business logic of the
enterprise, and the solution lies in preserving that business logic by extending the application’s
interfaces to interoperate with others or sometimes newer applications. The previously used
solutions like the User Interface Modernization, Peer-to-peer integration, message routers,
Common Object Request Broker Architecture (CORBA) and Common Gateway Interface are
overage and obsolete. Recently, the more adopted solution is the Service Oriented Architecture
(SOA), which takes advantage of some integration technologies like the Web Services. As
referenced in [6], Web Services offers a set of standards based on the Internet, very simple and
popular, for information systems and applications integration.

2. Data Integration: In this approach the real currency of the enterprise is its data. The implied
business logic in the data and metadata can be easily manipulated directly by applications in the
new architecture of the enterprise. Some of data integration solutions are XML Integration and Data
Replication, however, the XML Integration has the disadvantage of only resolve the syntactic
problem. Actually, the biggest problem in Data Integration resides on the semantic aspect, however,

is being developed technologies like Semantic Web Services [7] and ontology definition languages,
such as OWL [8], for achieve one solution.

2.2 Documents Format

As mentioned above, the data structure is an important matter in the information system interconnection.
One of the requisites of e- business – particularly in the electronic invoice – is that the data is structured in

order to ease data exchange.
At first the e-market used technologies like Electronic Data Interchange (EDI) or Electronic Data Interchange

For Administration, Commerce, and Transport (EDIFACT). However, the costs to implement and maintain the
use of these technologies became very high since, for example, excusive lines for the system were needed. This
aspect was a setback for the integration of Small and Medium Enterprises (SME’s) as they couldn’t support such
expenses.

The use of technologies like EDI [1][14], XML [1][3][10], ebXML [1], among others, in the exchange of
structured messages between companies in a standardized way, is an important issue to the acceptance of best
practices in electronic invoice. The level of access to information that Internet allows nowadays is also a very
important aspect.

As referenced in [6], XML is assumed by many as the elected language for formatting messages. By the use of
XML, a company is able to create new messages formats for orders, invoices or any other document type. This
flexibility allows companies to adjust the messages formats to fit in their business particularities. In the other
hand, this solution forces the use of tools and/or converters for introducing these messages in the company
information system and/or retrieving them.

2.3 Adapters

Adapters or connectors are pieces of software that are used in application integration and act as intermediaries
to access applications that weren’t developed for that purpose, such as legacy systems.

Nowadays, and concerning companies integration, the used adapters are becoming “smarter”, which makes
the event capture, when executing intermediary systems, easier. These intelligent adapters are assigned to many
of the dynamic tasks necessary to the application integration, like code updates, when another application is
changed. Instead of being done by the programmer, these changes are all made by the adapter itself.

As referred in [2] there are two kinds of adapters referring Message Brokers: Thin Adapters and Thick
Adapters. These adapters can act in a dynamic or static way. Thin Adapters are mostly API’s that map the
system’s interface to a common interface supported by the Message Broker. Thick Adapters expose common
software and functionalities to be used by the Message Broker infrastructure and the source/destination
application. They also make it easier to manage the information flow and the process invocation, due to its
abstraction layer. The static adapters must be implemented manually according to the requirements and
specificity the systems used by them. They do not have mechanisms to comprehend the relational schema of the
databases, which results in a manual configuration to receive the information of the data original schema. On the
other hand, the dynamic Adapters, also known as intelligent adapters, are used to deal with the dynamic tasks
involved in application integration. They have the ability to learn about the systems they interact with, through
the reading of the information acquired in the initial connection to the application or database.

3 Basic Information Systems

The ERP used in this study was the Primavera Express. This system was built taking in consideration some
important aspects to small companies, with a very low number of employees. Built to the commerce and services
markets, and based in the more evolved versions of the product, this software allows managing sales e invoicing,
as well as Customer Relationship Management (CRM) and Stock Management. However, it’s a limited product
in terms of functionality, because it is mainly meant to give the possibility to manage some essential business
operations, to small and newly created companies. [17]

At the technological level, Primavera Express has a big advantage: it was built over the same technological
base of the other, more advanced products, directed to other market segments and types of companies. This
allows that, in the future, if a company wants to migrate to a more evolved system of the Primavera line, it can
do this with virtually no effort. It uses, as a Database Management System (DBMS) the Microsoft SQL Server
(the Primavera Express uses the Microsoft Desktop Engine / Microsoft SQL Server Express).

The Primavera Express ERP is commercial management software that allows the management of all the
business operations of a company, including invoicing, through the use of recent technology, and without any
cost. By releasing the new Electronic Transactions module, this ERP gives the possibility to change the
invoicing method of the company to electronic invoicing. With this initiative, Primavera Express aims to equip
companies with the most advanced technologies, promoting the innovation of the company itself, at the
processing level. All these offers allow the company to use this ERP, independently of the market segment in
which they are included. This was one of the main reasons for the usage of the Primavera Express software in
this study. [17]

3.1 Tables

There were many possibilities of integration with other systems, however the choice was to interact directly
with the Primavera Express database. The involved tables on the electronic mediation scenario, used by the ERP
Primavera Express, are represented in Figure 1 corresponding, respectively, to the tables used for sales and to the
tables used for purchases.

The information obtained from the Selling tables is converted and sent to the client, and the information to
insert in the Buying tables is obtained from the document sent by the supplier.

Figure 1 – Buying and Selling Relational Diagram

4 Metadata Repository

This adapter is used mainly to ease the access to legacy systems, converting its information to a canonic
format, and by this allowing the communication among various systems. This conversion is defined using XML
configuration files, which allows to easily integrating another ERP without the need of additional programming.

The purpose of this adapter is to be a solution to the problems that arise when a company wants to exchange
messages between different systems, that can’t usually do it in a standardized way. To solve this problem, it’s
necessary to define a single format to the messages, and the systems only need to convert from the relational
format to this unique format. The adapter not only solves this problem but also, solves the biggest issue when
dealing with message conversion: the need to program the modules that will convert to and from the canonic
format. The adapter will execute these operations automatically, easing the work of the developer. This is
achieved using a metadata repository that contains information related with the connections to the system’s
databases, as well as the operations, parameters a output results expected in the coding and decoding process of
data to be written in the database.

This metadata repository contains information regarding the ERP systems, including the data format that it
uses, in terms of entities and methods, and is written by a programmer that has know-how about the ERP system
itself.

The integrator element between the adapter and the ERP System is a SQL Server database and, consequently,
the language used to code it is SQL.

Taking in consideration that the technological architecture of the company, as well as the integration between
the different systems, is very important issue to the system’s “big picture”, the metadata repository assumes a
very important role. In the end, the metadata could contain information about all the applications and
information systems that exists in the company, becoming a real corporate repository for information.

In conclusion, the adapter allows a standardized execution method, capable of reading the information stored in
the metadata repository, and obtaining the information that is to be inserted in the ERP system. This information
is converted to a canonic and standardized format, defined by the systems involved, and used to build messages
that are to be exchanged among those systems.

4.1 Functionalities

The metadata information has two main purposes: describe the system’s API, and make that API easy to use by
external systems. Using a metadata model, the systems will be able to integrate the information from multiple
sources, using the configurations stored in the repository, and converting them to the desired format.

The configuration components that exist in the metadata model are shown in Figure 2.

Figure 2 – Metadata Repository Schema

The DBConfiguration component corresponds to the parameters that are needed when communicating with the
database, namely the database server, the database name and the login and password information.

The Entity component is related to the set of configurations necessary to obtain or insert information from the
system. Each Entity contains at least one Method that allows the insertion of a set of possible system operations.
In each Method, it is necessary to describe the entry parameters and the output results. Depending on the purpose
of the Method, it is possible to specify only the entry parameters (if the objective is to insert information in the
system) or the output results (when the method doesn’t require any entry parameters to be executed). It is also
possible to specify necessary data type conversions, using the Conversions component to describe the data type
returned by the system and the data type to which we want to convert. This is extremely useful when integrating
with other systems that use different data types. Another important component is the Dependences that describe
the dependency relationships between tables. This way, it is possible to deal with situations when the main table,
that contains the information, has some foreign key relationships to other tables. By specifying these cases using
the Dependences component, the foreign key value will be replaced by the corresponding value on the foreign
key’s table.

The ExtraConfiguration component is related to all the configuration information that is necessary to some
important operations that run in background. In this study, it’s used to know specifically how to obtain the
necessary attributes to find documents recently inserted in the system.

5 Integration Technologic Solutions

A possible usage scenario to this adapter is shown in Figure 3. In this example, there is a Message Broker that
connects the different ERP systems. The Message Broker is used to support business process modeling and is
responsible by the communication and secure routing of documents exchanged by two or more ERP systems. On
the other hand, the Invoice Adapter is a component that exists in each system, where all the aspects related to the
integration and conversion of data are dealt with, in order to make it possible to exchange documents between
the different legacy systems. This way, instead of a point-to-point connection between a system and all the
others, each ERP only needs to be connected to the Message Broker.

As shown in Figure 2, each ERP system has one extra-application, the Invoice Adapter that is parameterized
and configured in accordance to the system to which is associated. Another relevant aspect is the usage of the
WCF Framework between the Message Broker and the ERP System. The choice to use WCF was due to the fact
that it is a unified programming framework used to rapidly build safe, reliable and service-oriented applications,
that support communication standards like Ws-Security, Ws-Trust, Ws-Addressing, and others.

Figure 3 - Invoice Adapter Usage Scenery

The Invoice Adapter has three fundamental layers: the Communication Layer, the Message Creation / Reading

Layer and the Database Communication and Data Conversion Layer. In Figure 4, it is possible to see how these
layers relate to one another.

Figure 4 –Invoice Adapter Overview

The Communication Layer is responsible for the communication with the Broker and also for the

management of all the messages that were received, and that are to be sent, to the Message Broker. As
mentioned before, the WCF framework is used in the communication and message management, through the use
of the MSMQ technology to store, in message queues, the messages received and the messages to send.

The Message Creation / Reading Layer is the component responsible to deal with the messages that go
through the adapter, as well as to manage the events related to the reception and sending of messages. This layer
is also the one that will read the information in the metadata repository and send information to the Database
Communication & Data Conversion Layer.

Finally, the Database Communication and Data Conversion Layer is the component that will deal with the
data conversion, to the canonic format and to the relational format or the ERP’s database. This layer is also
responsible for reading the information, from the database, that is to be sent, and for inserting new data in the
database, received from another ERP System.

5.1 Communication Layer

This module is like a separated layer from the rest of the modules. As shown in Figure 5, this layer is
composed by four Windows Services that are always executing, in order to manage the communications. Using a
Design Pattern’s naming convention, each one of these services implements an Observer.

Figure 5 – Communication Layer Arquitechture

The Windows Service responsible for receiving messages deals with the messages sent by the Message Broker,

through the WCF. This service implements a WCF Server, and is always waiting for new messages to be
inserted in the ERP System. On the other hand, the Windows Service responsible for sending messages will send
messages to the Message Broker, also using WCF. This service will invoke the services exposed by the WCF
Server on the Message Broker to send new messages, as soon as they are ready to be sent. Both services use the
message queues (MSMQ) to store the messages received or to obtain the messages to be sent through WCF.

The Windows Service that processes the received messages obtains the messages stored in the message queue
by the Message Reception Service, and generates events that will lead to actions in the Message Creation /
Reading Layer. The message will then be read and stored in a generic object in memory that will be used later by
the Database Communication and Data Conversion Layer, to convert the data from the canonic format to the
relational format, and consequently write it to the database.

The Windows Service that processes the messages to be sent is responsible for the detection of new documents
in the ERP System’s database, that are ready to be sent to the Message Broker. First, this service accesses the
ERP’s database to obtain information about the most recent documents. This access is made by invoking a
method in the Message Creation / Reading Layer that deals with all the necessary operations to obtain the most
recent documents. After receiving the list of the documents to be sent, they are stored in the message queue, that
is read later by the service responsible by sending the messages. This service will then send the messages to the
Message Broker.

5.2 Message Creation/Reading Layer

This layer creates messages to send to the Communication Layer and reads the messages received by the same
layer. As shown in Figure 6, this layer is also responsible for managing the operations to be executed in the
Database Communication and Data Conversion Layer, in case of database readings to obtain a message build
registry and in cases of writing information read from messages to the database.

Figure 6 – Message Creation / Reading Layer Architecture

The content of the messages is stored in the object obtained through the desserialization process of the XML

document provided by the WCF framework. This way, and in the context of this study, the Message object
contains all the information about an electronic invoice. The way how the information is stored in a generic
object will be different depending on the situation.

This layer is responsible for many of the operations when executing the Invoice Adapter, like verifying and
obtaining new documents from the ERP system, reading and writing messages as explained before, and also by
invoking the methods, of the Database Communication and Data Conversion Layer, responsible by inserting and
reading information from the ERP system.

5.3 Database Communication and Data Conversion Layer

This layer is responsible for the communication with the persistence component of an ERP System, a legacy
database. Generic and complex, this layer will essentially be used to integrate data, supporting many operations
like:

• Extract information from a database, transform or convert that information in a canonic format,
load the information in a generic object to be used later by the Message Creation / Reading Layer, as
shown in Figure 7.
• Obtain the information from a generic object, transform or convert that information in a

relational format, load the information in a database as shown in Figure 8.

Figure 7 – Database Communication and Data Conversion Layer Architecture (data reading).

Figure 8 - Database Communication and Data Conversion Layer Architecture (data writing).

The database access is made in an efficient way that can be adapted to any type of database, in any ERP

system, specified in the metadata repository, as referred in Chapter 4.

5.3.1 Data Base Generic Reading and Writing

The access to the ERP System’s database is made using generic objects that contain information from the
metadata repository. The parameters that are present in the configuration file, related with the connecting,
obtaining and writing information from the database, are used by this layer to make the access generic, and
without the need of additional programming in case a new database is used. The process of accessing the
database is not visible to the user, and is executed automatically according to the event that made it happen (new
messages from the Message Broker or new documents in the database).

5.3.2 Data Conversion

The conversion or transformation of information between the two formats, the relational format and the
canonic format (defined by all the ERP systems involved) is one of the most important aspects of this study,
because it’s the proposed solution to incompatibility problems between different systems.

The adopted solution is based on the usage of elements and attributes that exist on the metadata repository, like
the Conversion element. It is performed a comparison between the data format in database and the data format in

the received message from Message Broker. If they are different, is made a conversion of the relational format
for the standard format, respectively.

The Conversion element, on the other hand, will be used to extra conversions and also before the conversion to
the canonic format. This means that situations where it is necessary to transform a field in a certain type, before
converting it to the final format, can happen.

These types of conversions are frequently present in EAI and ESB products (like the Message Broker with
which the adapter interacts). Usually, there are mappers that allow the visual specification of the conversions to
be made. In the adapter case, the desired functionality is simple and lightweight, and it is not necessary to use
one of the products mentioned.

6 Conclusions

This study described an architecture and a methodology for the development of an integration adapter that
should be used in electronic mediation scenarios.

The objectives proposed initially were fulfilled, and a version of the adapter was produced that allows the
integration of different ERP systems in electronic mediation scenarios. The adapter receives electronic
documents in a canonic format from the Message Broker, reads them, processes them (converting the data) and
finally inserts them in the ERP’s database. All the processing related to the message is done according to the
relational model specified in the configuration file (metadata repository). On the other hand, the adapter also
reads information from the database, processes and converts the information, and creates an electronic document
that is to be sent to the Message Broker.

After a careful analysis of the state-of-the-art, and of the results obtained with this study, we can conclude that
this adapter has the following advantages:

• Motivates the integration of different ERP Systems.
• Abstraction, to the users, of how the adapter works internally.
• Automatic execution of Windows Services.
• Usage of message queues to temporary store messages to be sent or messages that were received,
solving the problem of message management.
• Secure communication, using the WS-Security protocol of WCF.
• Usage of digital signatures and certificates to ensure the authentication and confidentiality.

The following disadvantages were also identified:

• Relatively low performance.
• Some restrictions in the internal integration level with the ERP System, considering only integration
with databases.

A proposal for future work to be developed is the implementation of code blocks that send and receive

confirmation and error messages, which reflect the result of the message processing in the client and Message
Broker, and also the result of the communication.

It would be interesting if one made a more advanced approach, when considering the Database Communication
Layer, which is responsible for reading and writing information on the database, and also for the conversion
between de data formats. Also related to the communication with the database, some methods should be
redesigned to allow connections to other databases, not only Microsoft SQL Server. This layer is the most
important of the adapter, because it makes it possible to exchange messages between systems with different data
formats.

At the electronic invoice level, there are some improvements that can be made related to legal aspects, like the
existence of an external certification entity, responsible by emitting and distributing digital certificates, making
the certificate exchange more secure.

7 References

[1] P. Marques, Troca de Informação de Negócio para Negócio – Do EDI ao XML/EDI e EBXML, Universidade
Fernando Pessoa, 2003.

[2] D. Linthicum, B2B Application Integration – E-Business – Enable Your Enterprise, Addison-Wesley Information
Technology Series, 2001.

[3] F. Cummins, Enterprise Integration – An architecture for enterprise application and systems integration, John Wiley
& Sons, 2000.

[4] G. Samtani, M. Healey, S. Samtani, B2B Integration: A Practical Guide to Collaborative E-Commerce, Imperial
College Press, 1992.

[5] I. Gorton e A. Liu, “Architectures and Technologies for Enterprise Application Integration”. Em Proceedings of 26th
International Conference on Software Engineering, 2004.

[6] M. M. Silva, Integração de Sistemas de Informação, FCA – Editora de Informática, 2003.
[7] Martin Hepp: Ontologies: State of the Art, Business Potential, and Grand Challenges, Hepp/De Leenheer/de

Moor/Sure. (Eds.): Ontology Management: Semantic Web, Semantic Web Services, and Business Applications, ISBN 978-0-
387-69899-1, pp. 3-22, Springer, 2007.

[8] S. Bechhofer, F. Harmelen, J. Hendler, I. Horrocks, D. McGuinness, P. Patel-Schneider, L. Stein, “OWL Web
Ontology Language”, W3C Proposed Recommendation, 2003.

[9] K. Qureshi, “Enterprises Application Integration”. Em Proceedings of International Conference on Emerging
Technologies, pp. 340-345, 2005.

[10] H. M. Sneed, “Using XML to integrate existing software systems into the Web”, Em Proceedings of Computer
Software and Applications Conference, pp. 167-172, 2002.

[11] A. Vasconcelos, M.M. da Silva, A. Fernandes, J. Tribolet, An Information System Architectural Framework for
Enterprise Application Integration. Em Proceedings of 37th Hawaii Conference on System Sciences, 2004.

[12] M. Chowdhury e M. Zafar, Integration of Legacy Systems in Software Architecture. Em Proceedings of Workshop at
SIGSOFT, pp. 110-104, 2004.

[13] J. Lee, K. Siau., and S. Hong, Enterprise integration with ERP and EAI. Commun. of the ACM, Vol. 46, No. 2, pp.
54-60, 2003.

[14] UMIC, Guia da Factura Electrónica, 2006.
[15] M Themistocleus, Z. Irani, P. Love, Enterprise Application Integration: An Emerging Technology for Integrating

ERP and Supply Chains. Em Proceedings of European Conference on Information Systems, 2002.
[16] S. Dorda, K. Wallnau, R. Seacord, J. Robert, A Survey of Legacy System Modernization Approaches, CMU/SEI-

2000-TN-003, 2000
[17] Primavera Express
http://www.primaverabss.com/pt/PortalRender.aspx?PageID={906727d5-b773-491d-b5e6-5d089089d110}

